If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2+7r+3=0
a = 4; b = 7; c = +3;
Δ = b2-4ac
Δ = 72-4·4·3
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-1}{2*4}=\frac{-8}{8} =-1 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+1}{2*4}=\frac{-6}{8} =-3/4 $
| 2n^2+9+10=0 | | 3k-1+5k-7=2 | | 7-3y+4=12 | | 10x+24=3x+3 | | 24=9x-3x | | 6(x-6)+4=6x-32+ | | 3(c-2)=13 | | 7/8x-9=27 | | 6y+7=8 | | 25x-44=100 | | x^2-40x-800=0 | | f(6)=1/3(6)-2 | | 4x+6-3=17 | | 6(2x-4)=48-6x | | 5x/9=15 | | 6y+3(1/3y-4)=7y+2y+12 | | 2x+3=5x−14 | | y/7+1=5/2 | | 5x-89+43-2=284 | | 3/4x+5=21 | | 6/k=6/11 | | T+r÷1=0 | | 61+4y-23=16y-11-5y | | 5m-1=4m5+ | | X(8y+3)=2y-9 | | 2x-61°=x-3° | | 3(c+5)=12+4c | | (8+u)(5u+4)=0 | | X-3°=2x-61° | | 9x-4(x-4)=72 | | 5x+10=9x-18 | | 2n=17.16 |